博客
关于我
可伸缩性
阅读量:445 次
发布时间:2019-03-06

本文共 546 字,大约阅读时间需要 1 分钟。

技术文档:系统可伸缩性与扩展性

常见问题

在实际应用中,硬件设备的性能限制有时会影响软件系统的优化效果。这时候,单纯依靠软件优化已经无法提升性能,系统架构需要进行改造,通过组合多个低处理能力的硬件设备,构建具有高处理能力的系统。

可伸缩性

可伸缩性是指在增加计算机资源(如CPU、内存、存储容量或I/O带宽)时,程序的吞吐量或处理能力能够相应提升。例如,当业务量较小时,软件系统可以运行在一台服务器上;当业务量扩大时,可以通过增加服务器数量或在单台服务器上部署更多实例来提升性能,无需对软件本身进行编码级修改。

架构扩展方式

纵向伸缩(Scale-up)

通过提升单台机器的配置,适合解决短期处理需求的问题。优点是维护简单,但缺点是高端设备费用昂贵,且单台机器的处理能力有限,故障影响较大。

横向伸缩(Scale-out)

通过增加机器数量来提升系统性能。理想情况下,负载扩大N倍,机器数量也应增加N倍,以保持性能不变。优点是成本低且故障影响小,但缺点是节点数量增加,架构复杂度提高,维护成本更高。

可伸缩性与可扩展性的区别

  • 可伸缩性:关注系统规模的扩展。
  • 可扩展性:关注系统对变化的适应能力。

通过合理设计系统架构,结合纵向和横向伸缩策略,可以在满足业务需求的同时,优化系统性能和维护成本。

转载地址:http://coufz.baihongyu.com/

你可能感兴趣的文章
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>
NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
查看>>
NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_说明操作步骤---大数据之Nifi工作笔记0028
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南002---大数据之Nifi工作笔记0069
查看>>
NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
查看>>
NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
查看>>
NIH发布包含10600张CT图像数据库 为AI算法测试铺路
查看>>
Nim教程【十二】
查看>>
Nim游戏
查看>>
NIO ByteBuffer实现原理
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>